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I .  S t a t e m e n t  o f  t h e  P r o b l e m  

In view of the widespread  use  of he terogeneous  s y s t e m s  with a chaotic s t ruc ture ,  it is impor tan t  to analyze 
methods of invest igat ing the coeff icients  of genera l i zed  conductivity* of these  s y s t e m s .  Examples  of these  s y s -  
t e m s  include me ta l  c e r a m i c s  produced by the c o m p r e s s i o n  molding of a mix tu re  of two powders  with p las t ic  
g ra ins  in the f o r m  of unextended i s o m e t r i c  p a r t i c l e s ,  g ranu la r  s y s t e m s  or  mix tu res  fo rmed  by a powder d is -  
t r ibuted  in a binder  component  (compounds), emuls ions ,  solutions of nonreact ive  fluids,  e tc .  This  r ev iew is 
r e s t r i c t e d  to an examinat ion of the ca se  of a mix tu re  of components  that  a r e  not changed when the i r  or iginal  
p r o p e r t i e s  m e r g e  beth within the different  components  and at the i r  i n t e r f aces .  

The p rob lem is that  of analy t ica l ly  de termining  the fo rm of the function re la t ing  the effect ive coeff icients  
of  genera l i zed  conductivity A to the coeff icients  of conductivity of the components  Xl, X2 . . . . .  Xn and to the i r  
vo lumetr ic  concentra t ions  m l ,  m 2 , . . . ,  Inn,  i . e . ,  

A = ~(Li, •z . . . . .  Zn, m i ,  m s . . . . .  ran). (1) 

The form of function (1) is dependent on the choice of model for the geometrical structure of the hetero- 
geneous system and on the means used to mathematically describe the transfer process being studied (heat 
flow, charge, electr ical and magnetic induction, etc.). 

Two bas ic  approaches  to solving the p rob lem analyt ical ly  can be dist inguished.  In the f i r s t  the chaotic 
s t ruc tu re  is rep laced  immedia te ly  by a spat ia l ly  o r d e r e d  model  with a long- and s h o r t - r a n g e  o r d e r  and a unit 
ce l l  is then isola ted.  The t r a n s f e r  p r o c e s s  being studied is ma thema t i ca l ly  desc r ibed  in the volume of the 
unit ce l l  and the effect ive p rope r t i e s  of the s y s t e m  --  the coeff icients  of genera l ized  conductivity [1-4] --  a r e  
de te rmined .  

The e s sence  of the second approach  is an a t tempt  to account fo r  the chaotic na ture  of the s t ruc tu re  of the 
heterogeneous  s y s t e m  di rec t ly  by field [5-12,14,16] and s ta t i s t i ca l  methods [23-30, 35, 37]. 

As shown by an ana lys i s  of pape r s  adhering to this school  of  thought, authors  a s sume  ei ther  exp re s s ly  
or  taci t ly  that  these  methods of analys is  a r e  cha r ac t e r i z ed  by ce r t a in  m e r i t s ,  namely:  

a wide field of applicat ion and the absence  of the in ternal  contradict ions c rea ted  by s imulat ing the s t r u c -  
ture ;  

the facility to account for the random shape of the particles and the chaotic nature of their distribution 

in space. 

It is then to be expected that an improved analytical apparatus can be devised and that the properties 
of the heterogeneous systems being studied can be forecast better if these special characteristics are taken 

into account.  

* Coefficients  of t h e r m a l  conductivity,  e l ec t r i ca l  conductivity,  e l ec t r i ca l  and magnet ic  induction, d ie lec-  
t r i c  pe rmi t t i v i ty ,  v i scos i ty ,  and diffusion. 
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The t e r m  ' istatist ical me thods , "  which is widely used in the titles and texts of ar t ic les  and is often iden- 
tified with the study of chaotic (disordered) s t ruc tu res ,  calls for  a more  prec ise  definition. In fact,  normally 
when the potential fields in heterogeneous sys tems  are  descr ibed and when the proper t ies  of these sys tems are  
determined,  two qualitatively different mathemat ical  apparatuses are  used: the field theory apparatus and the 
probabili ty theory apparatus.  

In many cases  the concept of "s tat is t ical  analysis p rocedures"  implies averaging physical  fields over  the 
volume occupied by the heterogeneous sys tem,  which is not related direct ly  to principles of probability. It is 
thus expedient by analogy with the problems of s ta t is t ical  physics to re fe r  to the different procedures  for using 
the probability theory apparatus as "stat is t ical  methods. " 

Many published works are  examined in accordance with this classif icat ion of approach and they are  eval-  
uated in t e r m s  of whether and to what extent they possess  the mer i t s  outlined above. 

I I .  P o t e n t i a l  F i e l d  A v e r a g i n g  M e t h o d s "  

The field method is based on the following assumption: the physical  field is averaged over  volumes that 
are  ma jo r  in compar ison with the scale of the heterogeneit ies .  In t e rms  of such a field the mixture is a homo- 
geneous and isotropic medium. These res t r ic t ions  should then be satisfied: 

a) the par t ic les  a re  isotropic and i sometr ic ;  

b) the difference in general ized conductivity* (AX = k 1 -- s betweenthe components is small  compared 
with the magnitude of the conductivities Xl and X2 or  for  a random difference AX there should be a 
low concentrat ion of one of  the phases ,  i . e . ,  m i / m  2 << 1 or  m2/m i << 1; 

c) there  are  no significant surface or  contact phenomena at the interface of the components.  

It is shown below that if these res t r ic t ions  are  d is regarded when the effective coefficient of conductivity 
of the mixture A is determined,  absurd resul ts  may ensue. 

Field methods are  used to determine A in [5-12,14,16].  The mathematical  procedures  for  field deter-  
mination that a re  used a re  examined in o rder  to clar i fy the origins of the res t r ic t ions  enumerated above and 
in o rde r  to analyze the results  obtained in these papers .  

The concept of the volume-mean flow of substance (heat, charge ,  induction, etc. ) is introduced: 

l IT 1 I)~EdV= < ~  > (2) <-7 > =-v-. ~ = V - .  
V g 

where j is the local flow of substance,  X is the local value of the conductivity of the mixture ,  E is the local 
value of the field s t rength generating the substance flow, V is the volume of mixture over  which the a v e r -  
aging is c a r r i ed  out, and the angled brackets  here and hereaf te r  denote averaging over  a volume. 

The mean value of the field s trength E is 

and the mean value of the conductivity is 

5 ~dV, < ~ > = T  
V 

(3) 

<k> = v- ~n/. (4) 
V 

mean value of < E > hy the relation The averaged magnitude of the flow < j > is related to the 

<7> =A<~:>. (s) 
The local values of k and E can be presented in the form 

k= <k> q- 6)~, (6) 

2= < ~> +8~, (7) 

where 6X, 6E are, respectively, the deviation of the local values of k and E from the mean values. 

*For  the sake of brevi ty ,  the t e r m  "conductivity" will be used hereinaf ter .  
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By substituting (6) and (7) into (2), we obtain 

The following obvious relat ions a re  used in deriving (8): 

i j" 1 ff6~:dV=0" ( 6 ~ )  = ~ ; ~ = o ;  ~ 6s =-)-- 
F V 

By substituting (8) into (5) we obtain 

(8) 

A= (Z) + (~Z~)  (9) 

The problem of determining the effective coefficient of conductivity by field methods can be solved only 
in the presence  of a smal l  pa r ame te r  in express ion (9) [6,8]. The smal l  p a r a m e t e r  in (9) can be isolated 
when ( E ) > 0 ,  if: 

1) 6~t --- 0 for  any values of 6E  < ~ ,  i . e . ,  when the difference between the conduetivities of the compo- 
nents of the mixture ~ is smal l  compared  with the values of }'l and ~2; 

2) ~E ~ 0 for  any values of 6~ < ~. The local value of the field s t rength E does not differ great ly  f rom 
the mean value ( E ) ,  if the concentrat ion of inhomogeneities is low, i . e . ,  for  a random difference AX there  
should be a low concentrat ion of one of the components;  

3) 6 E - - 0  and 6~--~ 0. In this case ,  which is of little in teres t ,  A -~ (~,). 

If there  is no smal l  p a r a m e t e r  in (9), A can be evaluated f rom the conditions required for minimum 
entropy generat ion only f rom above and f rom below [8]: 

l 
< A  - ~  ( ~, ) �9 (10) 

The field methods can be used only when the res t r ic t ions  stated above a re  sat isf ied,  and if they are  not 
sat isf ied,  the resul ts  obtained by the field methods may give r i se  to false conclusions.  

Thus, in [5] when the effective conductivity of a mixture with a chaotic s t ruc ture  (statistical mixtures) 
is determined within the f ramework  of the field method, the following formula  is obtained: 

~-~ = 0, (11) ~ h 

t~ + 2A 

where n is the number  of components in the mixture and ~i is the conductivity of the i - th  component. 

For  a two-component  mixture express ion (11) takes the form 
[ 

A = (3ml-- 1)~a + (3m2-- 1);~ ~_ [[(3m,--1)k,+ (3m 2 -  1) ;~] 2 _, ).1;.~ ] T .  (12) 
4 ' [ 16 2 J 

It follows f rom (12) that when 2t2/~ 1 -~ 0 

A = _11_ (3mi__ 1) ~1 (13) 
2 

and when m I < 1/3 we obtain A < 0, i . e . ,  a phys i ca l l yabsu rd  resul t  has been achieved, as indicated in [13]. 
It becomes c lea r  that when the difference in conductivities k I and k2 is great  the relationship of (11) and (12) 
can be justified only for low concentrat ions of the second component m 2 << I .  

In [6] a relat ionship for  A is obtained for a random number  of components ,  the conductivities of which 
do not differ too much f rom each other ,  in the form 

! n l 
T A ~-  = m~Xi . (14) 

i = l  
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F o r  a b i n a r y  m i x t u r e  with a low c o n c e n t r a t i o n  of  one of the  c o m p o n e n t s  (m 2 
fo r  the  c o n d u c t i v i t i e s ,  the  fo l lowing  f o r m u l a  i s  ob t a ined  fo r  A [6]: 

3 ( ~  - -  x,) x~ 
A = k x + m 2  

X2 + 2~, I 

In t he  d e r i v a t i o n  of (15) i t  i s  a s s u m e d  tha t  the  p a r t i c l e s  with a low c o n c e n t r a t i o n  m 2 a r e  s p h e r i c a l  in 
f o r m .  

When Xl/~2 - -  0 the  r e l a t i o n s h i p  t a k e s  the  f o r m  

A - - - - ( 1 - - - -  

<< ml)  but r a n d o m  va lues  

(15) 

2 m2 )~1" (16) 

If r e s t r i c t i o n  b) i s  not  o b s e r v e d ,  a r e s u l t  m a y  be ob ta ined  to the  e f fec t  tha t  A < 0, which i s  p h y s i c a l l y  
n o n s e n s i c a l ,  i . e . ,  e x p r e s s i o n  (15) can  be a p p l i e d  only  when r e s t r i c t i o n s  a) ,  b) ,  and c) a r e  s a t i s f i e d .  

A m i x t u r e  wi th  A2/A1 = 0 i s  e x a m i n e d  in [7] wi th in  the  f r a m e w o r k  of t h i s  a p p r o a c h  and a r e l a t i o n s h i p  fo r  
A i s  sought  fo r  high c o n c e n t r a t i o n s  of m2, i . e . ,  the  a u t h o r  in u s i n g  the  f i e ld  m e t h o d s  i n d i c a t e d  to d e t e r m i n e  
A does  not  t ake  into  accoun t  the  r e s t r i c t i o n s  on which  the  u s e  of  the  me thod  i s  b a s e d .  

Skorokhod  [7] e x a m i n e s ,  a s  do Landau  and L i f s h i t s  [6], the  fo l lowing  i n t e g r a l  in o r d e r  to e x p o s e  the  l ink-  
ing of the  p h y s i c a l  p r o p e r t i e s  of the  m i x t u r e :  

1 # (7--  xl~) dV = < I7 > --x, < ~ > (17) 
V 

V 

w h e r e  X 1 i s  the  conduc t iv i t y  of the  f i r s t  c o m p o n e n t  (X 1 = eons t ) .  

E x p r e s s i o n  (17) e v a l u a t e s  the  d e v i a t i o n  of  the  c u r r e n t  in the  m i x t u r e  < ~  f r o m  the c u r r e n t  in the  m i x t u r e  
i f  A = ~i, i . e . ,  the  m a g n i t u d e  of the  p e r t u r b a t i o n  on the  b a c k g r o u n d  i s  

The subintegral expression in (17) differs from zero only within the second component. In fact, if (17) 
is represented in the form 

1 (7- - ) '1  ~) dV = ( ]u - -  X1 Eiz) dVll "- ~ (]sh--~,iE=h) dV21 ~ = I i + l  ~, (18) 
V k=l V g [  ~ 

l." = l " i g  - 

w h e r e  i = 1, 2, ~  , n i s  the  n u m b e r  of  e l e m e n t s  in  the  f i r s t  c o m p o n e n t  and k = 1, 2, . . . ,  m i s  the  n u m b e r  of  
e l emen t s~ in  the  s e c o n d  c o m p o n e n t .  The f i r s t  i n t e g r a l  ~ in (18) i s  equa l  to z e r o  (s ince  J-~i = X~E~i)" The  s e c o n d  
i n t e g r a l  I 2 can  be r e w r i t t e n  as  

= (k=E2k - -  X x E=~) dV=~ = rn=h (k~ - -  s < E2k > �9 (19) 

H e r e  m2k = V2k/V is  the  c o n c e n t r a t i o n  of the  k - t h  e l e m e n t  in the  s e c o n d  componen t ;  

< E2 h- ) = ~I S ~21flV2h; (20) 

V2k 

< E2k) is the mean value of the field strength within the element in the second co~llponent (sphere, cylinder, 
etc. ). 

If the elements of the components are isometric, then (19) takes the form 

7.2 = m2 (s < E.20 > , (21) 

V2~ (22) 
V ' 

r e a l  = m 2 ~  - - - - - . . .  = m 2 h  - -  

s i n c e  in th i s  c a s e  

mV~ V 2 
m 2 ~ .~_  _ _ _  

V V ' (23) 
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Vie 

where V20 is the volume of the isometric element of the second component. 

By substituting (21) into the right-hand side of (18), taking into account that I 1 = 0, we find 

By replacing ( j)  with expression (5) or (25), we obtain 

A ---- ~i q- m2 ()~ --)~l) ( ~ > (26) 
<E> 

In o the r  w o r d s ,  the i s o m e t r i c i t y  of the e l emen t s  of  the componen t s  of  the  m i x t u r e  is  a n e c e s s a r y  condi -  
t ion fo r  the t r ans i t i on  f r o m  (19) to (21) and then to (26). 

It i s ,  t h e r e f o r e ,  a s s u m e d  in [6] tha t  the e l emen t s  of  the componen t s  a r e  a s p h e r i c a l  f o r m .  
p a r t i c l e s  [6] 

< ~ > ~ + 2;.~ 

and after substitution of (27) into (26) we obtain (15). 

Skorokhod [7] assumes that each component is a mixture of spherical, ellipsoidal, and cylindrical 
f o r m a t i o n s  and r e c o r d s  0t 2 = 0) the e x p r e s s i o n  fo r  A in the f o r m  

A = XI (1 - -  tnu) < E2 > 
<~> 

The ( E  2 ) value found in (28) is  equat  to 

< A --= /_~ tn2h ( > , 
k = '  

wherea s  it would have been expected  [see (19) and (17)] that  

For such 

The e r r o r  m a d e  by Skorokhod [7] in r e c o r d i n g  (28) makes  it  poss ib le  to avoid r e s t r i c t i o n  b), i . e . ,  to 
find the r e l a t ionsh ip  fo r  A o v e r  the whole range  of  va r i a t ions  in concen t r a t i on  when ~2/X~ = 0. In this ca se  
r e s t r i c t i o n  b) is e x p r e s s e d  f o r m a l l y  in the fact  that  the fol lowing should be sa t i s f ied  in (29): 

,/E~h ) 
~ m o ~  ~ I, 

(27) 

(28) 

(29) 

(30) 

(31) 

and this  i m p o s e s  a r e s t r i c t i o n  on m2, thus ,  

<E~>  > 1  when ---)~2 = 0. (32) 
~ >  ~-1 

A c c o r d i n g  to the r e c o r d i n g  of (28) used  in [7], fo r  any m2, the fol lowing is sa t i s f ied :  

A > 0 .  

Thus ,  a l though the final  e x p r e s s i o n  fo r  A co inc ides ,  a c c o r d i n g  to Skorokhod,  with e x p e r i m e n t a l  da ta ,  
it cannot  be c o n s i d e r e d  a c c u r a t e .  

A f u r t h e r  s h o r t c o m i n g  of this method  of ca lcu la t ing  A [7] is tha t  the re la t ionsh ip  fo r  A is obtained only 
fo r  a spec ia l  c a s e  when h2/2~1 = 0. 

In s o m e  of the la tes t  p a p e r s  f ield methods  a re  used to d e t e r m i n e  the ef fec t ive  t h e r m a l  conduct iv i ty  of  a 
c o m p o s i t e  m a t e r i a l  c o m p r i s i n g  a cont inuous  m e d i u m  (the binder)  and sol id  p a r t i c l e s  of  f i l l e r  d i s t r ibu ted  at 
r andom in it [9-12]. 

When A is d e t e r m i n e d  in these  pape r s  it is  a s s u m e d  that  
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> = <)'i > + ,,s< J: >, 

<vT>=(I--ms)(vTI>+m,<vT,>, 
(33) 

(34) 

w h e r e  

< T> =--A < v7 > ; <]i > =--~I < VY~ > ; 

<i;> 
(35) 

H e r e  the  i n d i c e s  1 and 2 r e f e r  to the  b i n d e r  and f i l l e r ,  r e s p e c t i v e l y .  

It i s  c l e a r  f r o m  E q s .  (33) and (34) tha t  the  a u t h o r s  a c c e p t  tha t  the  v o l u m e t r i c  c o n c e n t r a t i o n  of i n c l u s i o n s  
i s  equa l  to the  s u r f a c e  c o n c e n t r a t i o n  of  i n c l u s i o n s  in any g iven  c r o s s  s e c t i o n  p e r p e n d i c u l a r  to the  hea t  f low 
and equa l  to the  l i n e a r  c o n c e n t r a t i o n .  Such a m o d e l  of m i x t u r e  s t r u c t u r e  r e p r e s e n t s  a m i x t u r e  with a u n i f o r m  
c o n c e n t r a t i o n  of  i n c l u s i o n s  in any g iven  v o l u m e ,  i . e . ,  the  m i x t u r e  is  t r e a t e d  as  s t r u c t u r a l l y  h o m o g e n e o u s .  
To d e t e r m i n e  A with  such  a m i x t u r e ,  a s  can  be s e e n  f r o m  E q s .  (33)-(35),  i t  i s  enough to f ind the  connec t ion  
be tween  ( V T -  >, < V ~ I > ,  and <V~2>.  To th i s  end the  a u t h o r s  r e p l a c e  the  o r i g i n a l  p r o b l e m  of  d e t e r m i n i n g  A 
wi th  the  p r o b l e m  of d e t e r m i n i n g  the t e m p e r a t u r e  f i e ld  of an i s o l a t e d  p a r t i c l e  l o c a t e d  in the  b i n d e r  m e d i u m  
and the  po in t  t h e r m a l d i p o l e s ,  i m i t a t i n g  o t h e r  f i l l e r  p a r t i c l e s ,  which  a r e  d i s t r i b u t e d  in i t .  The  r e l a t i o n  b e -  
tween  < VT ) and  ( VT 2 ) i s  then  found us ing  the  w e l l - know n  p o l a r i z a t i o n  c o r r e l a t i o n  [6]. T h u s ,  if  the i n t e r -  
s p e r s i o n s  a r e  s p h e r i c a l  in f o r m ,  then 

< vT~ ~ _ 3A 
(vT> k s+2A ' (36) 

where A is the effective thermal conductivity of the mixture [see formula (27)]. 

According to condition (33) in [12] the magnitude <j > is expressed by the relation 

< T> = -  - C  Zl v~dVs = - -  --7- ;,1 vTdV ~- ( v~dVs < V~ > --ms (;...--;.1) < V~, > 
,J 
V~ I,'2 V V2 

i . e . ,  

< ~> ------~i ( V ~ > - -ms( is  --)h) ( vT-2 >, (37) 

and by taking into account (36) we obtain 

A ~I -? 3A (i s -- t'l) = - m,_. (38) 
t ' s  - -  2A 

The  f o r m u l a  o b t a i n e d ,  (38), is  ana logous  to (15) and when X2 = 0 i t  too l e a d s  to  an a b s u r d  r e s u l t  when 
m 2 > 2 /3 .  F o r  high c o n c e n t r a t i o n s ,  t h e r e f o r e ,  the  a u t h o r s  u se  the  cond i t ion  tha t  the  t e s t  p a r t i c l e  ( i so la ted)  
be s e p a r a t e d  f r o m  a f i c t i ona l  e n v i r o n m e n t  wi th  a t h e r m a l  conduc t iv i t y  A by a l a y e r  wi th  a b i n d e r  t h e r m a l  con-  
duc t i v i t y  ~1 and we ob ta in  the  e x p r e s s i o n  

36A (i s -- ~vl) Z 1 
A = }'1 -F ms (39) 

A (7~ - -  17),,) + Z 1 (5~v 2 -!- 7~.~) 

The  c o m p e t e n c e  of  th i s  m o d e l  f o r  s tudy ing  d e n s e l y  p a c k e d  i n t e r s p e r s i o n s  i s  open to doubt .  F r o m  (39) 
i t  i s  c l e a r  tha t  

A = r (~1, ~ ,  m~) 4: r (~,~, ~, ms), (40) 

which  i s  t r u e  f o r  a m i x t u r e  wi th  i s o l a t e d  i n t e r s p e r s i o n s  [4]. E x p r e s s i o n  (39) does  not  t h e r e f o r e  unde rgo  a 
l i m i t  t r a n s i t i o n  when m 2 = 1: 

A=/= }~s. 

E x p r e s s i o n  (39) i s  t r u e  only when m 2 < 0.6.  

A l l  t h e s e  s h o r t c o m i n g s  m e a n  tha t  the  e x p r e s s i o n s  fo r  A ob ta ined  in [9-12] can be a p p l i e d  to a r e s t r i c t e d  
g r o u p  of m i x t u r e s  and  they  c o i n c i d e ,  in f a c t ,  with the  c a l c u l a t e d  r e l a t i o n s h i p s  of O d e l e v s k i i  and Landau  [5, 6]. 

It shou ld  be no ted  tha t  i t  i s  p o s s i b l e ,  by  v i r t u e  of  the concep t  of m u l t i p o l e  i n t e r a c t i o n s ,  to f o r m u l a t e  a 
s t r i c t  s t a t e m e n t  of  the  p r o b l e m  of d e t e r m i n i n g  the  c o e f f i c i e n t  of  g e n e r a l i z e d  c onduc t i v i t y  fo r  m i x t u r e s  with a 
chao t i c  s t r u c t u r e  i f  t h e r e  a r e  no s u r f a c e  and c on t a c t  p h e n o m e n a  [14]. The  e s s e n c e  of  t h i s  s t r i c t  f o r m u l a t i o n  
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is that the field of any given sys tem of charges  can be represented  in the form of an infinite se r ies  of mult i-  
poles.  The field at any given point of a heterogeneous sys tem is expressed as a superimposit ion of the field 
generated by each of the par t ic les ,  i . e . ,  as equal to a double sum,  in t e rms  of the par t ic les  and in t e rms  of 
the multipoles localized in the part icle  cen te r s .  The local surroundings of the par t ic les  are  then different 
and the number  of different al ternat ives for the spatial distribution of the par t ic les  is huge, indicating that 
the problem must  be formulated as many-par t i c le  problems and, in par t icu la r ,  as fluid theory p rob lems .  

The function of the coordinates  must  be introduced in o rder  to take into account local inhomogeneities:  

g~(r)=/O, if rEV,, (41) 
[ 1, if rEV~, 

where V i is the volume occupied by the i - th  component.  

In fluid theory gi(r~ bears  the name of the cor re la t ive  distribution function [15] and determines  the pr_.9ob- 
ability of finding par t ic les  n = 1,2 . . . . .  m near  points r l ,  r 2 . . . . .  rm.  The mean value of the magnitude M(r) 
in this case  takes the form 

v j  
V 

Due, however,  to mathemat ical  complicat ions ar is ing when the s t r ic t ly  formulated problem is solved 
and when the form of the gi(r) function is determined,  only an approximate solution can be obtained for  A 
when m 2 - 0.6 [14,16]. 

Thus,  effective conductivity with a chaotic s t ruc ture  can be calculated if requirements  a), b), and c) 
are  satisfied when the field methods a re  used. When the general  p remises  on which the investigation method 
is based are  not observed,  e r r o r s  and contradict ions resul t .  For  mixtures  in which the s t ruc ture  and c o r r e -  
lation of component conductivities are  such that conditions a), b), and c) a re  not observed,  there fore ,  s tan-  
dard representa t ions  a re  brought into play,  using which the special  cha rac te r i s t i c s  of the p rocess  of t r ans fe r  
at the junction of the different components can be taken into account and the relationship for A can be found 
over  a wide range of variat ions in the determining pa ramete r s  of the mixture .  

I I I .  M e t h o d s  o f  D e t e r m i n i n g  t h e  G e o m e t r i c a l  

P a r a m e t e r s  o f  t h e  U n i t  C e l l  

In this group of methods the effective conductivity of the heterogeneous sys tem is sought not by aver -  
aging over  a volume the local flows and gradients  of the potential field s t ruc tu re ,  but by averaging in geome-  
t r i ca l  pa rame te r s  of a heterogeneous sys tem model in which the p rocess  being studied, which is concluded 
by determining the effective conductivity of the sys tem,  is then descr ibed mathematical ly.  

The procedures  for averaging the geomet r ica l  pa rame te r s  ~f  the model are  developed more  c lear ly  in 
investigations into the determination of the conductivity of grained heterogeneous sys tems  with a chaotic s t ruc-  
ture  [17-20]. 

Let us examine papers  classif ied within this group. 

The dimensions of the region around the contact {Fig. 1) are  determined by the number of grains in 
contact with any given par t ic le  among those under considerat ion.  In ordered  models with spherical  grains  
of the same size the number  of contacts  is known to be identical for  all the par t ic les  and to be determined 
by the coordination number N of the packing (hexagonal c lose-packed and face-cen te red  cubic N = 12, ortho- 
rhombic N = 8, cubic loose-packed N = 6, and diamond N --4) which is related unambiguously to the volu- 
metr ic  concentrat ion of spheres .  In ordered spher ical  grain pacMng the porosi ty  dependence of the coordina- 
tion number  N = f ( m  2) is d iscre te  in nature,  which reflects  the fact that it is possible to synthesize only c e r -  
tain types of ordered  s t ruc tures  in sys tems  made up of spheres  of the same diameter .  

Actual grained mater ia ls  have a chaotic s t ruc ture  by virtue of a difference in the shape and dimensions 
of the par t ic les  and in their  positioning relative to each other.  Assuming that in actual burdens with a chaotic 
s t ruc ture  the volume-mean number of contacts (N)  will be monotonically dependent on the concentrat ion of 
components ,  Kunii and Smith [17] propose a semiempi r ica l  corre la t ion  for evaluating the dimensions of the 
region around the contact (r, H, Fig. 1), derived f rom a general izat ion of the N = f ( m  2) relationship for  o rdered  
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Fig. 1. Determining the averaged geometr ica l  
pa ramete r s  of a constant spot: a) line of flux 
in mixture with chaotic s t ruc ture ;  b) element 
of chaotic s t ruc ture  with averaged pa rame te r s .  

packing of spheres  of the same size.  The semiempi r ica l  relationship assumed is r es t r i c ted  to a fairly narrow 
range of variat ions in the volumetric  concentrat ion of the m 2 component in the space between grains .  

Correla t ing the resul ts  obtained by Kiselev [21] by measur ing  the coordination number of grained sys-  
t ems ,  Kaganev [18] proposes  an empir ical  corre la t ion  for evaluating (N)  which is suitable for calculations 
over  a wide range of variations in the concentration of the component between grains 0.26 < m 2 < 1 in the form 

( N ) ~ 11.6 (1 --m2), (43) 

which is used for  calculating the effective thermal  conductivity of grained sys tems .  

An analytical  determination of the dependence of the mean value of the coordination number onthe com- 
ponent concentration is proposed by Eremeev  [22]: 

I 

( N ) = m2 -~ 3 ~ (rn~ - -  10m 2 -~9) Y (44) 
2m~ 

and it is then used to evaluate the averaged values of the geometr ica l  pa ramete r s  of the region around the 
contact when calculating the effective thermal  conductivity of grained and bonded (sintered and compacted) 
mater ia ls  in [19-20]. The averaged values of the geometr ica l  pa ramete r s  of the heterogeneous sys tem mo- 
dels can be calculated from the papers  in this group and the magnitude of the conductivity of the sys tem as a 
whole can then be forecas t .  

It should be noted that the fundamental problems (and possible sources  of e r ror )  in the methods in this 
group are  t ransposed from the region of the analytical  (formal) descript ion of potential and flow fields in the 
sys tem to the simulation of the geometry  of a sys tem with a chaotic s t ructure .  The c lar i ty  of representat ion 
of the spatial models makes it eas ie r  to represen t  separate  aspects  of the process  under investigation but 
generates  as many problems as it solves in the form of requirements  which are  hard to satisfy imposed on the 
development of geometr ica l  models adequate for the chaotic s t ruc ture  under investigation. 

I V .  M e t h o d s  o f  C o n s t r u c t i n g  t h e  F o r m  o f  

t h e  F u n c t i o n  A = ~ ( ~ 1 , ~ 2 . . . ? t n , m l . . . m n )  

U s i n g  P r o b a b i l i t y  P r i n c i p l e s  

In this group of methods of investigating the conductivity of heterogeneous sys tems with a chaotic s t ruc-  
ture ,  volumetr ic  averaging procedures  are  not used for potential fields or  the p~trameters of the geometr ica l  
model and the procedures  employed are  somewhat formal  in charac te r .  

The following assumptions can be charac te r ized  as the initial p remises  of the works in this group: 

the conductivity of the chaotic mixture of noninteracting components is an unambiguous monotonic func- 
tion of the conductivity of the components;  

an adequate mathematical  apparatus ,  such as the probabili ty theory,  is required to account for the 
chaotic nature of the distribution of the components in the volume of the heterogeneous system.  

In the papers  in this group the form of the function is ,  as a rule,  determined not f rom solving the physi-  
cal problem,  but by the formal  selection (construction) of a function satisfying the boundary conditions and a 
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number  of quali tat ive r equ i r emen t s  such as invar iance  in t e r m s  of the components  and r eve r s ib i l i t y  (being 
poss ib le  to ca lcula te  both the conductivi t ies  and the r e s i s t iv i t i e s ) .  

The method of cons t ruc t ing  the fo rm of function (1) is used in the works of IAchtenekker [25-27] pub-  
l ished between 1924 and 1930. 

Working f r o m  genera l  quali tat ive cons idera t ions ,  Lichtenekker  a s s u m e s  that  in he te rogeneous  s y s t e m s  
with d i so rde red  s t r u c t u r e s ,  the effect ive r e s i s t iv i ty  of the s y s t e m  R can be e x p r e s s e d  unambiguously in t e r m s  
of the r e s i s t a n c e  of the components  Pi and the i r  vo lumetr ic  concentra t ions  m i.  For  a two-component  s y s t e m  

R - (D (P,, P2, m2). (45) 

The author  fu r the r  r equ i r e s  that the effect ive conductivity be expres s ib l e  in t e r m s  of the conductivity 
of the components  X 1 and X2 using the s a m e  functional re la t ionship ,  i . e . ,  

A=O(~.I ,  k2, m ~ ) o r  - -1  = O (  1 , 1 , m2 ) .  (46) 
R Pl P2 

It follows f r o m  (43) and (44) that 

( i ) ( 1  1 ) 1 (47) 
Pl P* ~ (p, p,, m,) 

In the l imit ing cases  for  a concentrat ion of any of the components  of 0 or  1, function (45) should give 
the magnitude of the r e s i s t iv i ty  of the cor responding  component ,  i . e . ,  

(I)(Pl, Pc, 0 ) ~  Pl; (I)(Pl, P2, 1 )~  P2- (48) 

Conditions (47) and (48) as fo rmula ted  a re  sa t i s f ied  by the function 

R = p~l-m~)p~, or A----k~ z-re') )~'* �9 (49) 

As Lichtenekker  r e c o r d s ,  re la t ionship  (49) gives a s a t i s f ac to ry  ag reemen t  with exper iment .  

By taking the log of (49) we obtain 

log A = (1 - -  m,) log 7.1 --  m., log k2. (50) 

The las t  exp res s ion  gives  Lichtenekker  grounds for  propos ing  the following rule % . .  with binary s y s t e m s  with 
a d i so rde red  dis t r ibut ion of components  i t  is not the conductivi t ies  but the logs of the conductivi t ies which 

m e r g e .  " 

It is in te res t ing  to note that L ich tenekker  t r e a t s  the logar i thmic  re la t ionship  (50) obtained for  the p r o p -  
e r t i e s  of the he te rogeneous  s y s t e m  as a new resu l t  of his own, whereas  the same  f o r m  of re la t ionship  is p ro -  
posed prev ious ly  by Arrhenius  [24] for  binary solut ions.  

The p rocedures  for  construct ing functions a r e  developed in the works of Deimek [26], IAchtenekker ,  and 
Rote r  [25,27]. The two possible  ex t r em e  types of s t ruc tu re  a r e  examined  - -  with pla tes  lying in pa ra l l e l  o r  in 
s e r i e s  re la t ive  to the flow. The t h e r m a l  conductivity of a s y s t e m  with such pla tes  is exp re s sed  as follows: 

2~,. ~ ( 1 -  m e) 9.~ -/- rn2X2; ~. ~= ( 1--m., , rn.~ ) - ' ,  ~ s ~ )-~ (51) 

where h H and ~• a r e  the values of the coeff icients  of t h e r m a l  conductivity with para l l e l  and perpendicu la r  
or ientat ion of the pla tes  with r e f e r ence  to the flow. 

Each of the ~ II and h• magni tudes is t r ea t ed  as a m e a s u r e  of the e l e m e n t a r y  probabi l i ty  of the p r o c e s s e s  
de termining the effect ive magnitude of the p rope r ty  being studied. Fo r  example ,  the c lo se r  the genera l  d isposi -  
tion of pa r t i c les  app rox ima tes  to the l imit ing case  of s e r i e s  connection, the c l o s e r  is A to )~• Designating the 
re la t ive  f requency (probabili ty of occurrence)  of this case  as u and the re la t ive  f requency of the opposite case  
as ( l - -u) ,  L ich tenekker  cons t ruc t s  a function taking the following fo rm:  

A ~ [(1 - - .  m e) ~.2 - ' -  meT*e] ~' (52) 

such that  when u = 1 and u = 0 it is conver ted  into fo rmula  (51). 

If i t  is accepted  that the probabi l i t ies  of d i f ferent  plate or ientat ion a r e  equal,  i . e . ,  u = 0.5, then 

864 



A ~ 

a b c 
;Y 

' ~  ~ d 

F i g .  2. Mode l  f o r  c a l c u l a t i n g  the  e f f ec t i ve  t h e r m a l  c o n -  
d u c t i v i t y  of  m i x t u r e s  with a chao t i c  s t r u c t u r e :  a ,  b , a n d  
c) T s a o  m o d e l  [28]; d) Cheng and Vachon m o d e l  [29]; q) 
d i r e c t i o n  of  hea t  f low.  

l 

A = ~12v2 (1 - -  m2) ~ - -  m ~  1 J (53) 

With  a c o n c e n t r a t i o n  m 2 = 0.5 the  f o r m u l a s  in (51) a r e  t r a n s f o r m e d  into  

! 

A = (~,1~,) ~ .  

This  r e l a t i o n s h i p  c o i n c i d e s  wi th  (47) i f  m 2 i s  t a k e n  to be 0.5 in i t .  

L i c h t e n e k k e r  r e c o m m e n d s  the u se  of  funct ion  (52) fo r  m i x t u r e s  with g e o m e t r i c a l l y  equa l  componen t s  and 
the u s e  of  the  l o g a r i t h m i c  m e r g i n g  l aw  (49) f o r  m i x t u r e s  wi th  nonequa l  c o m p o n e n t s .  

C e r t a i n  s p e c i a l  c h a r a c t e r i s t i c s  of f o r m u l a s  of  the  type  of  (49) and (52) o b t a i n e d  on the  b a s i s  of the  func-  
t ion  " c o n s t r u c t i o n "  m e t h o d  shou ld  be no t ed .  F i r s t  and f o r e m o s t ,  t h e s e  f o r m u l a s  do not  unde rgo  a s i gn i f i c an t  
l i m i t i n g  t r a n s i t i o n  when the conduc t i v i t y  of one of the c o m p o n e n t s  t a k e s  v a l u e s  of  z e r o  o r  in f in i ty .  

A s t r u c t u r e  wi th  c l o s e d  i n c l u s i o n s  i s  e x a m i n e d  and a va lue  of ~l ~ 0, X2 = 0, o r  ~2 = ~ i s  a s s u m e d .  In 
th i s  c a s e  the  t h e r m a l  conduc t i v i t y  of the  whole  s y s t e m  shou ld  have  f in i t e  v a l u e s  and f o r m u l a  (49) g i v e s  a r e s u l t  
o f A  = 0 o r A  =0~ 

If in a s t r u c t u r e  with i n t e r p e n e t r a t i n g  c o m p o n e n t s  a va lue  i s  a s s u m e d  f o r  t he  c onduc t i v i t y  of  one of  the  
c o m p o n e n t s ,  f o r  e x a m p l e ,  k2 = 0, then  the whole  m i x t u r e  shou ld  exh ib i t  a t h e r m a l  conduc t iv i t y  va lue  of A > 0 
but a d i f f e r e n t  r e s u l t  i s  ob ta ined  f r o m  f o r m u l a  (49), n a m e l y ,  A = 0. F u r t h e r ,  r e l a t i o n s h i p s  l ike  (49) o r  (52) 
do not  r e f l e c t  the  a c t u a l  s t r u c t u r e  of  the  m a t e r i a l ,  so they  a r e  i n s e n s i t i v e  to such  s p e c i a l  c h a r a c t e r i s t i c s  of 
the  s t r u c t u r e  a s  the  e x i s t e n c e  of  c o n s t r i c t i o n s  in  the  t r a n s v e r s e  c r o s s  s e c t i o n  of the  conduc t ing  c ompo nen t ,  
the  e x i s t e n c e  of  a c r a c k e d  s t a t e  o r  of  a n i s o t r o p y ,  e t c . ,  which  a r e  of s i g n i f i c a n c e  to the  t r a n s f e r  p r o c e s s .  In 
c e r t a i n  c a s e s  the  c a l c u l a t i o n  of the  t h e r m a l  conduc t i v i t y  of one of the  c o m p o n e n t s  b e c o m e s  p r o b l e m a t i c a l  wi th-  
out s o m e  knowledge  of  the  s t r u c t u r e .  F o r  e x a m p l e ,  in a p o r o u s  s o l i d  m a t e r i a l  the  g e o m e t r i c a l  and p h y s i c a l  
p a r a m e t e r s  of  the  p o r e s  m u s t  be t a k e n  into  acc oun t  in o r d e r  to d e t e r m i n e  the  t h e r m a l  conduc t iv i t y  of the  c o m -  
ponent  in the  p o r e s .  In o t h e r  w o r d s ,  d e s p i t e  the  a p p a r e n t  a t t r a c t i o n s  of the  m e r g i n g  laws  ob ta ined  by L i c h t e n -  
e k k e r  and d e s p i t e  the  a c c u r a c y  of i n d i v i d u a l  r e s u l t s ,  th i s  m e t h o d  i s  c o n s i d e r e d  by the  p r e s e n t  a u t h o r s  to b e ,  
on the  whole ,  not  v e r y  p r o m i s i n g .  

V .  M e t h o d s  o f  A c c o u n t i n g  f o r  t h e  C h a o t i c  D i s p o s i t i o n  

a n d  t h e  F o r m  o f  t h e  I n t e r f a c e s  o f  t h e  C o m p o n e n t s  

A m o n g  the e a r l i e s t  p u b l i s h e d  w o r k s  in th i s  g r o u p  a r e  the  p a p e r s  by  T s a o  [28] and h i s  f o l l o w e r s  Cheng 
and Vachon [29,30] .  F i r s t  of a l l ,  a uni t  vo lume  of a t w o - p h a s e  h e t e r o g e n e o u s  s y s t e m  (F ig .2a )  is  e x a m i n e d  
which  is  d iv ided  up into  i n f i n i t e l y  th in  l a y e r s  by p l a n e s  p e r p e n d i c u l a r  to  the  hea t  f low ( p a r a l l e l  with the  y z  
p lane) .  The  c o m p o n e n t  c o n c e n t r a t i o n  in  each  of the  l a y e r s  i s  c o n s i d e r e d  to  v a r y  r a n d o m l y .  By d i s p l a c i n g  one 
of  the  c o m p o n e n t s  in e a c h  uni t  l a y e r  t o w a r d  the  xz  p l ane  (Fig .  2b) and by  sh i f t ing  the a c t u a l  l a y e r s  h e r e  and 
t h e r e ,  a s t e p p e d  c o m p o n e n t  i n t e r f a c e  which  i s  l a t e r  r e p l a c e d  by a s m o o t h  i n t e r f a c e  (F ig .  2c) c a n b e  ob ta ined .  
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Fig. 3. Transformat ion  of Demidchenko model [37]. 

If the geometry  of this in terface ,  i . e . ,  the fo rm of the relationship y = y(x), is known, then the effective 
the rmal  conductivity A of the heterogeneous sys tem can be found as the inverse  of the sum of the the rma l  
res i s tance  of all the layers  of the unit volume. Tsao proposes  the following calculation formula:  

1 

A =  t. 
0 

d l l  
I 

I 
~ ' 2 - ~ ( ~ - - ~ ' 2 ) ;  ~V-2-~ e x p [ - - ~ ( @ ~ ) ]  d/l 

l ,  

(54) 

where Xs and h2 are  the the rmal  conductivities of the components;  I s is the "l inear" concentrat ion of the com-  
ponent with thermal  conductivity Xi; m s is the mean value of /i; and (r is the s tandard deviation of the "linear" 
concentrat ion I s f rom m I. 

The fundamental difficulty, according to Tsao,  lies in the calculation of the integral  in the denominator 
for which the law governing the probabili ty distribution of the components in the unit layers  must be known 
as well as the values of the "l inear" concentrat ion of components which is ,  according to Tsao ' s  definition, 
equal to the rat io of volumetr ic  and surface concentrat ions of these components.  In expression (54) a normal  
law of component distribution is assumed.  This expression can therefore  be calculated only by numer ica l  
methods.  

The Cheng and Vachon model [29] (Fig. 2d) differs f rom the Tsao model only in that the law governing 
the distribution of the concentrat ions in the layers  l = l (x) is given in the form of a parabola l = B + Cx 2 with 
the B and C coefficients related to the component concentrat ion in such a way that the ratio of the a rea  bounded 
by the parabola I =B + Cx 2 to the unit a rea  (1 x 1) of the volume under considerat ion (1 x 1 • 1) is equal to the 
concentrat ion of a component represented  by noncontacting inclusions. The Cheng and Vachon calculation for-  
mula when )~I < X2 appears  as follows: 

! 

A - {C (~i - -  7~2)[~ § B (~i - -  ~2)1}~- (55) 
1 I '  

B [C()~I__)~2)]T ~ ~- 
[)~-B(I~I--X2)I'/2--" -2- {C(;.1--)~o)[;~ '--. B(~I--%)I(I- -B)}  - 

In 1 " 
, ,/2 B ~.2)]T ~', 

IZ'2vB(Z'*--a=) - - 2  [C(~.,-- 

where m s is the concentrat ion of the component with thermal  conductivity hs, B = [3ms/211/2, and C = - -B /4 .  

The special  charac te r i s t i c s  held in common by the models under examination are  formulated below. 

1. The difference between these models and other previously known models (cubic, spher ica l ,  ellip- 
soidal,  e t c . ,  inclusions) lies only in the shape of the inclusions. In the Cheng and Vachon model the inclusions 
and the descript ion of the shape of the component interface are  equivalent to the representat ion of the unit cell  
in the form of a parallelepiped with in terspers ions  in the form of a cyl indrical  paraboloid (Fig. 2d). 

2. The procedure  used to break down the volume into infinitely fine i somet r ic  planes perpendicular  to 
the heat flow with the subsequent t ransformat ion  of cell  geomet ry  is incor rec t .  For  a heterogeneous sys tem,  
the dimensions of which are  much g r ea t e r  than the part icle  dimensions,  there  should be an identical corre la t ion 
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between component concentrat ions in each unit cell ,  the model being therefore  one of para l le l -connected 
plates each of which ref lects  the heat t r ans fe r  in the corresponding component.  Such a model is known [31] 
to cause a considerable  exaggeration in the calculated magnitude of thermal  conductivity. It is possible that 
Tsao,  Cheng, and Vachon [28,29] r e so r t  to this incor rec t  procedure  in o rder  to avoid the inevitable t ransi t ion 
to the paral le l  plate model.  

3. The method of calculating the effective thermal  conductivity is applicable, if only to a limited extent, 
to heterogeneous sys tems  in which one of the components is made up of noncontacting inclusions.  

To sum up the foregoing, one may conclude that considerat ion of the s tat is t ical  pat terns established in 
the procedures  developed in [28, 29] not only fail to offer  any advantages,  but, quite the r eve r se ,  r e s t r i c t  the 
range of applicability of the models produced (item 3) and (item 1). No advantages to be gained from taking 
into account the chaotic nature of the s t ruc ture  of heterogeneous sys tems  in calculations of their  effective 
thermal  conductivity are  revealed by the compar ison given in [30] of calculations and experiment and data cal-  
culated by the Maxwell [32], Ohm [33], and Hamilton [34] formulas  in a na r row range of corre la t ions  between 
thermal  conductivity and component concentrat ions.  

Ivanov also attempts in [35] to use s tat is t ical  pat terns to make calculations for  grained and fibrous sys -  
tems.  Without going into detail on the a rb i t r a r iness  of the assumption made in [35] when car ry ing  out awkward 
mathemat ical  calculat ions,  it should be noted that for grained two-component sys tems made up of par t ic les  
with the same d iameter  Ivanov establishes a l inear relationship between the effective thermal  conductivity of 
the sys tem A and the porosi ty  m n and that the s t ruc tura l  model is a paral le l  connection of plates.  This is 
known [36] to be the least  successful  model for  the s t ruc ture  of grained sys t ems ,  the discrepancy between the 
calculated values obtained for A on this model being, as a rule,  more  than 100~c, since the rea l  (experimental) 
relationships A=A (mn) for  grained sys tems  a re  c lear ly  nonlinear in nature.  

Ivanov attributes this discrepancy to the presence  of a spec t rum of par t ic le  d iameter  values in actual 
grained sys tems  and introduces a cor rec t ion  (determined in such a way as to cas t  doubt on its own cor rec tness)  
in the dependence on the experimentally studied laws governing par t ic le  distribution by diameter .  It is ,  how- 
ever ,  well known that for  grained sys tems  made up of identical par t ic les  (small spheres  with the same diam- 
eter) the effective conductivity values A fall in the region of the experimental  values for  chaotic grained sys-  
tems made up of par t ic les  with differing diameters  and that when h 1 >> ~2 they differ considerably from the 
values determined by the l inear relationship A =km n. It seems likely that the difficulties involved in taking 
the s tat is t ical  patterns in disperse  bodies into account direct ly lead Ivanov in the f i rs t  stage of his investiga- 
tion to use the incor rec t  paral lel  plate model which does not ref lect  the special  s t ruc tura l  charac te r i s t i c s  of 
grained sys tems  and which causes a substantial  exaggeration (100% or  more) in A and in the second stage to 
introduce a cor rec t ion  to eliminate this exaggerat ion,  which can be determined only given a knowledge of the 
law of part icle  distribution by dimensions.  

The method for  calculating the effective thermal  conductivity of composi tes  and sintered metallic pow- 
ders  (metal ceramics)  described by Demidchenko [37] is based on taking into account the probabili ty patterns 
governing the distribution of components in the volume of the sys tem.  The author calls this method the "dif- 
fe rent ia l -s ta t i s t ica l"  method. A plane square  c ros s  section is isolated in the volume of a s ta t is t ical  mixture 
with component concentrat ions of m s and m 2 and with a porosi ty  m 3 (the third component); the component con- 
centrations and effective thermal  conductivity of the c ross  section under examination and of the sys tem as a 
whole are  assumed to be equal. The c ross  section is broken down into n 2 squares  (n along the ver t ica l  and n 
along 
c r o s s  

the horizontal as depicted in Fig. 3a). The component concentration values in each square (cell) of the 

section (matrix) are set at random by a random number generator with the following restrictions: 

in each horizontal row (rank) (Fig. 3b) the component concentrations are equal to the corresponding 

concentrations in the system and the component concentrations in the cells of a row can then take on 
any random values; 

in each vertical row (file) an equality of concentrations in it and in the whole system is satisfied only 
for any one component. 

The effective thermal conductivity of the matrix is calculated in two stages. 

First stage: the heat flow is aligned vertically (along the j axis). The components of the system in 
each cell are represented as plates, as shown in Fig. 3b; the rank interfaces are isothermal planes. The 
thermal conductivity of n ranks, i .e . ,  of the h I matrix, is recorded as follows: 

~Jrank = ~I =/~l~x ~ ~2m.~ ~- ~3rn a. (56) 
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Second stage:  the heat flow is aligned horizontally (along the i axis). The components a re  also r ep re -  
sented as plates (Fig. 3c); the file interfaces are  isothermal .  The thermal  conductivity of the files (of the 
whole matrix) is 

~'~ f i le  = ~II = Xlml -k X2 m* ~ ~]n~*, (57) 

"h  * * wit m 2 and  m 3 varying a rb i t r a r i ly  but sat isfying the condition stated above. 

It is proposed to find the "true" value of the effective thermal  conductivity as the ar i thmetic  mean f rom 

h I and hIi , i . e . ,  
Xl § ~n 

A -- 2 (58) 

The calculation method is la ter  improved as applied to metal  ce ramic  composi tes :  special  coefficients 
which make due allowance for the heat res is tance  of the contact between the par t ic les  for  different types of 
two-par t ic le  contacts  are  determined as a re  corre la t ions  of the number  of these types.  Finally,  calculated 
relat ionships a re  derived for  determining the thermal  conductivity of each of the types of two-par t ic le  con- 
tacts  and their  concentrat ion in the sys tem is d e t e r m i n e d .  When the effective the rmal  conductivity of the sys -  
tem is calculated by formulas  (56)-(58), ~l, k2, and k3 are  substituted by the corresponding values kl~l, k2~2 ,  

and k3~ 3. 

The f i rs t  and second stages f rom which formulas  (56)-(58) are  obtained a re  analyzed below. 

It can be shown that in the f i rs t  stage the model represen ts  a set of paral lel  plates (Fig. 3e); such 
a model is known; calculations based on this kind of model give considerably exaggerated values for the con-  
ductivity of the sys tem when the conductivities of the components differ significantly. 

In the second stage the model should be reduced to the form shown in Fig.  3d by use of the following 
arguments :  since the file interfaces are  the crux of the i so thermal  plane, the files can change places without 
al tering the thermal  conductivity of the sys tem and the components (plates) in each file can change places in 
the same way as in the papers  examined above [28, 29]. With the files changing places in such a way as to 
produce a smooth component interface, the end resul t  for a two-component  sys tem is a combination of the Tsao 
model [28] and a plate imitating a component with a high thermal  conductivity (Fig. 3d) and for  a th ree -compo-  
nent sys tem it is a plate in conjunction with the model examined by Cheng and Vachon [29]. 

Since the t rue  value of the effective thermal  conductivity is found in this paper  as the ar i thmetical  
mean f rom the thermal  conductivities of the models of the f i rs t  and second stages of the calculation, the 
final averaging is equivalent to a paral le l  connection of these models {Fig. 3d and e). Like components can 
be combined in this connection and it can be represented  as the model shown in Fig. 3f. 

The model thus established has the shortcomings inherent in the Tsao and Cheng-Vachon  models and, 
in addition, a number of other  shor tcomings ,  namely: 

1) the replacement  of one of the components of the model by a plate must give r ise  to an exaggerated 
calculated value for  the effective the rmal  conductivity if the cond{lctivity of this component is g rea te r  than 
the thermal  conductivity of the remaining components;  

2) the model does not ref lect  the components geometr ica l ly  if the lat ter  exist in the form of closed in- 
clusions (interspersions) ; 

3) the calculation of the effective thermal  conductivity becomes unjustifiably awkward. 

The compar ison between calculation and experiment made in [37] cannot, in the opinion of the presen t  
authors ,  fully serve  as justification for the applicability of the model,  s ince,  f i rs t ,  it is made for low-porosi ty 
metal ce ramic  mater ia ls  with components differing only slightly in thermal  conductivity, and, secondly, the 
divergence of the values calculated for the effective the rmal  conductivity in compar ison with the resul ts  of 
calculations by other well-known procedures  is comparable with the vagueness of our  knowledge of the coeffi- 
cient of conductivity of the components.  

Thus, f rom this analysis  of [5-37] a conclusion may be drawn to the effect that the models and proce-  
dures for the analytical determination of A produced when the stat is t ical  pat terns  in the s t ruc ture  of hetero-  
geneous sys tems  a re  taken into account are  at present  less complete than the models produced by reducing 
actual chaotic heterogeneous sys t ems  to ordered  sys tems  and then to their  unit cel ls .  

A synthesis  of the two schools of thought (field and probability methods) observed in the investigation 
of the general ized conductivity of heterogeneous sys tems  appears to be promising.  Such a step would combine 
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the s impl ic i ty  and c la r i ty  of r ep resen ta t ion  of the o rde red  mode l s ,  while at the s a m e  t ime  taking into account 
the random nature  of the dis tr ibut ion of components  in the volume of the mix ture .  

N O T A T I O N  

A, effect ive coefficient  of genera l ized  conductivity; ~i, Pi, mi ,  coeff icients  of conductivity,  r e s i s t ance ,  
and volumetr ic  concentrat ion of the i - th  component;  l i ,  l inear  conce_ntratio n of the i - th  component;  o, s tan-  
dard  deviation of l inear  concentrat ion l i f r om the mean value mi; <j }, (E  }, mean flow of substance and fi.eld 
s trength;  j ,  E,  local values of substance  flow and field s t rength;  < ~},  mean value of coefficient  of conductivity 
of heterogeneous  sys t em;  6E,  5X, local  deviation of field s t rength  and coeff icient  of conductivity f rom the i r  
mean values .  
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